Energy Efficient Ventilated Façades for Optimal Adaptability and Heat Exchange enabling low energy architectural concepts for the refurbishment of existing buildings.

E2VENT WORKSHOP

DEMO IN SPAIN AND POLAND

Diego Romera ACCIONA

Pilots

- Main objective:
 - Validation of the E2VENT deep renovation strategy
 - Assessment of
 - Robustness
 - Effectiveness
 - Viability
- Implementation and execution in two buildings
 - Different climate
 - Different typology of construction and use.
- Burgos:
 - University
 - Climate: Continental Moderate
- Gdansk
 - Residential
 - Climate: Marine West Coast
- Energy Goals
 - Reduction of 40% of primary energy consumption
 - Reduction of 40% of CO2 emissions
 - Reduce thermal and electrical peak loads

Project Management

Energy Audit

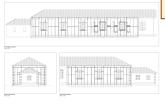


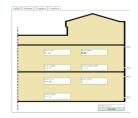
Installation

- Technical assessment of the building:
- **HVAC** systems
- Constructive and architectural features
- **Definitions of Energy Conservation Measures**
- IPMVP protocol (What, why, how and where to measure)
- Definition of the monitoring plan
- Definition of technical requirements

Deep

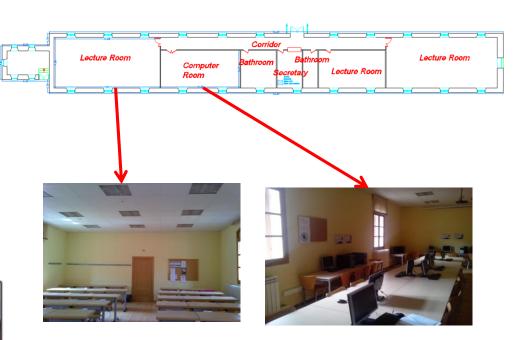
- Engineering architectural design
- Preparation of the site
- Manufacturing and the transport materials and components
- Preassembling of the Prototypes
- Installation works

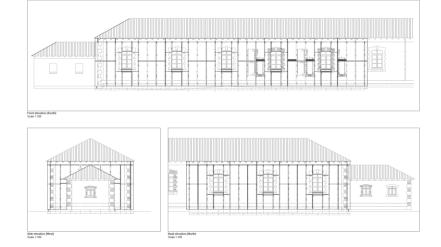

- Commissioning of the
- * Communication between control and energy systems.
- * Optimize performance.
- * Airflow and acoustic test,
- Assessment of:
- Improvement of Inner Comfort conditions
- * Energy Savings
- * Energy system operation and performance



- University building in Burgos
- One-level block, with pitched roof, masonry walls of 65cm thickness, notinsulated
- Centralized heating system. No mechanical ventilation
- Related Pathologies:
 - Comfort:
 - Low Indoor Environmental Quality
 - Energy-Related Pathologies:
 - Poor Building Envelope
 - Low Performance of heating system

- Two rooms of study: Lecture Room, PC Room
- Monitoring System
 - Energy Consumption
 - Internal comfort conditions
 - External weather conditions









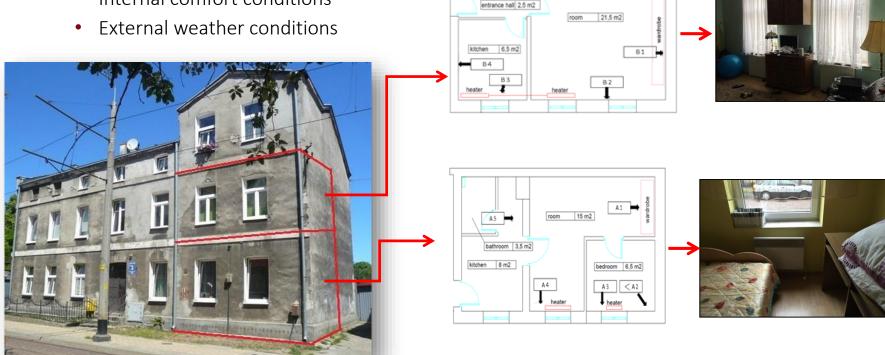
- Proposed Renovation
 - Envelope Upgrade
 - Ventilated façade
 - Ceiling insulation
 - Windows replacement
 - HVAC upgrade (just PC Room)
 - Ventilation System with heat recovery (SMHRU)
 - Cooling System (LHTES)
 - Control System (BEMS)

- Manufacturing
- Pre-assembling in factory
- Transport to the site

- Installation
 - Envelope: Ventilated façade modules, windows, insulation.
 - Prototypes (LHTES, SMHRU)
- Commissioning
 - Dampers and fans
 - Airtightness

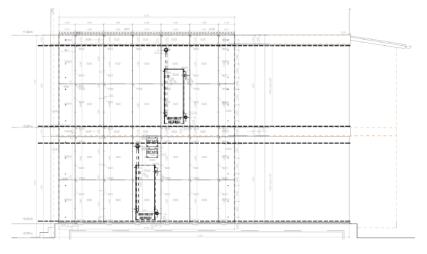
- Air flow
- Acoustic

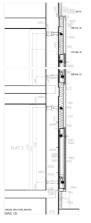
- Multi-family residential building in Nowy Port, Gdańsk
- External walls from full brick with thickness 38 cm, not-insulated
- 10 flats
- Individual heating system. No mechanical ventilation
- Related Pathologies:
 - Comfort:
 - Low Indoor Environmental Quality
 - Energy-Related Pathologies:
 - Poor Building Envelope
 - Low Performance of heating system

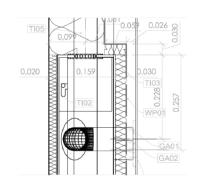


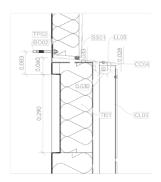
- Two dwellings of study: ground floor, first floor
- Monitoring System

Internal comfort conditions





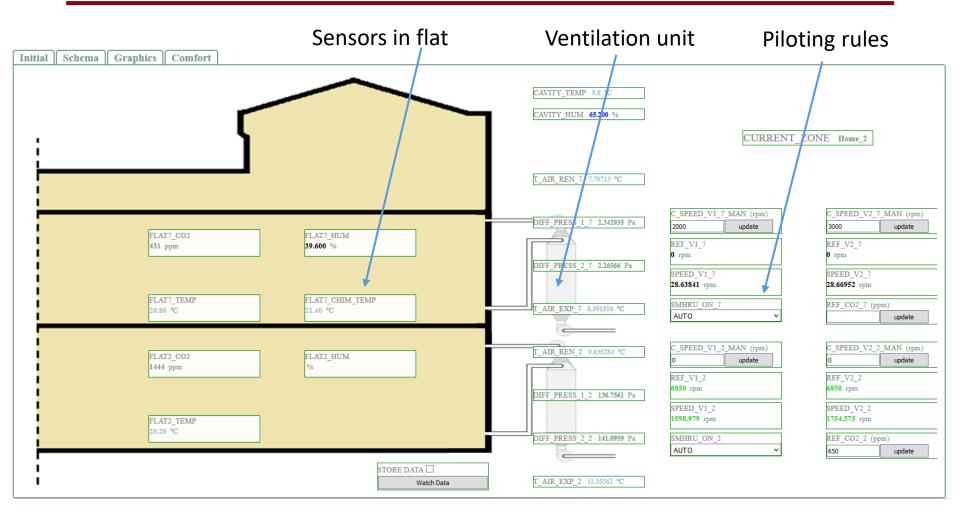

Proposed Renovation


- Envelope Upgrade
 - Ventilated façade (South orientation)
 - ETICS (West orientation)
- HVAC upgrade
 - Ventilation System with heat recovery (SMHRU)
 - Control System (BEMS)

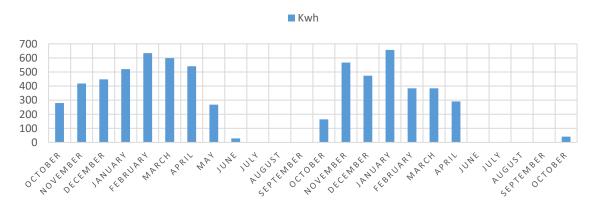
- Manufacturing
- Pre-assembling in factory
- Transport to the site
- Installation

Commissioning

- fans
- Airtightness
- Air flow
- Acoustic



BEMs interface



Data analysis

Pre-Monitoring data

- Post-Monitoring data: (Assessment in Progress)
 - Energy Savings
 - Comfort conditions improvement
 - Performance of Energy devices (LHTES, SMHRU)

Thank you for your attention.

Diego Romera Pascual

Project Manager. Energy Engineer.

diego.romera.pascual.ext@acciona.com

